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Any admissible portfolio performance measure
should satisfy four minimal conditions: it assigns
zero performance to each reference portfolio
and it is linear, continuous, and nontrivial. Such
an admissible measure exists if and only if the
securities market obeys the law of one price. A
positive admissible measure exists if and only
if there is no arbitrage. This article character-
izes the (infinite) set of admissible performance
measures. It is shown that performance evalua-
tion is generally quite arbitrary. A mutual fund
data set is also used to demonstrate how the
measurement method developed here can be
applied.

The literature on mutual fund performance measure-
ment goes back to the beginning of asset pricing
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theory, if not further. Since the early formal measures of Jensen (1968),
Sharpe (1966), and Treynor (1965), numerous new performance mea-
sures have been proposed. While we do not intend to conduct a
literature review here, there are the APT-based measures of Connor
and Korajczyk (1986) and Lehmann and Modest (1987), the period
weighting measures of Grinblatt and Titman (1989), and the intertem-
poral marginal rates of substitution-based measures of Glosten and
Jagannathan (1994), to list just a few. From a performance evalua-
tor’s perspective, this array of measures offers a rich choice set but
at the same time makes the selection of a method difficult (if pos-
sible at all). To make matters worse, there is no general theoreti-
cal framework that allows the evaluator to examine these and many
other proposed measures.1 What constitutes a “performance mea-
sure”? What is the minimal market condition in order for there to
exist an admissible performance measure? Are there other perfor-
mance measures beyond those that have been proposed? How dif-
ferently will these and other “admissible performance measures” rank
a given managed fund? The goal of this article is to address these
questions and study the entire class of admissible performance mea-
sures. In the analysis, we also propose performance measures that
can be identified from market data and are independent of any asset
pricing model.

The essence of performance evaluation is to measure the value
of the services (if any) provided by the portfolio management in-
dustry. It is to investigate whether a fund manager helps enlarge
the investment opportunity set faced by the investing public and,
if so, to what extent the manager enlarges it. Put differently, if the
manager provides a portfolio that is also achievable by the investing
public, he offers no service; it is when the managed fund lies out-
side of the existing investment opportunity set faced by the public
that the manager offers a genuine service. With this in mind, we
say a function is an “admissible performance measure” if it satis-
fies the following four minimal conditions. First, it assigns zero per-
formance to every portfolio in some reference set. For instance, if
the uninformed investors constitute the investing public, the refer-
ence set will then contain all portfolio returns that are achievable
by any uninformed investor. More generally, the reference portfolio
set can be enlarged to include all dynamic portfolios that are obtain-
able using public information. Second, the function is linear so that
a manager cannot create better or worse performance by simply re-

1 In the empirical literature, there have been studies to examine how different measures may rank
funds differently. See, for instance, Chen, Copeland and Mayers (1987) and Lehmann and Modest
(1987).
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bundling other funds. This ensures that superior performance is only
a result of superior information. Third, the function is continuous,
which guarantees that any two funds whose returns are indistinguish-
able from one another will always be assigned performance values
that are arbitrarily close. This imposes some sense of fairness to all
fund managers. Finally, the function is nontrivial in the sense that if
a fund’s excess return over a reference portfolio is proportional to
some traded security’s payoff, the fund will not be assigned a zero
performance.

What is the minimal market condition under which an admissible
performance measure exists? It turns out that there is an admissi-
ble performance measure if and only if the securities market satis-
fies the law of one price. This means that for performance evalua-
tion purposes, requiring market conditions (e.g., general equilibrium)
stronger than the law of one price may not be necessary. Now, sup-
pose that the law of one price holds on the market from which a
performance evaluator selects reference portfolios and that the eval-
uator is given some arbitrary function λ(·). Then, can this arbitrary
λ(·) be admissible as a performance measure? The answer is yes if
and only if it can be represented by some random variable d (sat-
isfying certain conditions) as in λ(x) = E (d x), for every random
variable x in some proper space. This result, stated in Theorem 2,
provides the strongest possible characterization of admissible perfor-
mance measures, since it asserts that every admissible measure must
be representable in this inner-product form and only functions repre-
sentable in this form can be admissible as performance measures. This
characterization answers the basic question of what can be a perfor-
mance measure and what cannot. It not only allows us to reexamine
existing proposed performance measures but also provides a criterion
for the introduction of new performance measures. For instance, we
demonstrate that the Jensen measure, the APT-based measures, and
the measures in Glosten and Jagannathan (1994) are all representable
in this form and are therefore admissible in our sense, but the pe-
riod weighting measures may not be admissible unless one additional
condition on the period weights is also imposed. Nonetheless, these
are only a few members in the infinite set of admissible performance
measures.

Given the infinity of admissible performance measures, will they
evaluate the same fund drastically differently? If a managed return
lies in the benchmark return set, the answer is no and all admis-
sible measures will give the fund a zero performance. However, if
a fund’s return is not achievable by an uninformed investor, then
by suitably choosing an admissible performance measure any per-
formance value can be assigned to the fund. Furthermore, for two
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funds whose returns are not achievable by any uninformed investor,
there will always be admissible measures that rank the two funds to-
tally differently: if one measure ranks one fund higher, there exists
another measure that will simply reverse the ranking (so long as the
two funds are not perfectly correlated). These two results are similar
in spirit to, but not the same as, Roll’s (1978) conclusions.2 In the
CAPM context, Roll argues that (i) by choosing the right inefficient
market index any Jensen α value can be assigned to a managed fund
and (ii) when inefficient market indices are used for the Jensen mea-
sure, the ranking of two managed funds can be easily reversed by
the choice of two inefficient market indices. Note that in his case the
arbitrariness of performance evaluation is caused by the use of an
inefficient market index and hence by the use of inadmissible perfor-
mance measures (in the sense defined here), whereas in our context
the arbitrariness is due to the multiplicity of admissible performance
measures.

The above negative results about performance measurement obtain
in part because of the fact that each measure is only required to sat-
isfy the four minimal conditions stated earlier. To make performance
evaluation less dependent on the choice of a particular performance
measure, we add one more condition: each measure must be positive,
in the sense that if a managed excess return (over any reference re-
turn) is positive with probability one, then the fund will be assigned a
positive performance. Such a performance measure exists if and only
if the securities market offers no-arbitrage (NA) opportunities. For
this reason, we refer to each admissible positive performance mea-
sure as an NA-based measure. When only NA-based measures are
used for performance measurement, performance values assigned to
a given fund will lie in some interval rather than the entire real line.
It is no longer the case that for any desired value, one can find a
performance measure that assigns this value. In particular, if a man-
aged fund dominates some reference portfolio in every state of nature,
then each NA-based measure will give it a positive performance rank-
ing.

NA-based measures possess other nice properties as well. For ex-
ample, if a fund is given a positive ranking by some NA-based mea-
sure, there must exist some investor in a certain preference class
who values (at the margin) this fund more than any reference port-
folio, which means that positive performance is associated with gen-
uine service provided by the manager and appreciated by at least
one investor. Conversely, if a fund is valued by some investor more

2 Roll’s points are further analyzed by Dybvig and Ross (1985) and Green (1987).
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than any reference portfolio, there must exist an NA-based measure
that gives the fund a positive performance. This result is encourag-
ing in the sense that if an evaluator uses an NA-based measure and
finds a fund with positive performance, the evaluator can immedi-
ately conclude that the manager has achieved an outperforming port-
folio with superior information, at least from some investor’s perspec-
tive.

Mayers and Rice (1979) were the first to formally argue that within
the CAPM framework it is internally consistent for some information-
driven fund to have a nonzero Jensen α value. Then, Dybvig and Ross
(1985) further elaborated on this point.3 Using a functional analytic
framework, our analysis further generalizes this argument. It shows
that having superior information per se does not automatically lead
to superior performance, depending on how the manager uses the
information. If the manager takes advantage of the information in the
right direction, he will typically produce a portfolio return that lies
outside of the linear span of reference portfolios. It then follows that
many admissible performance measures will assign a nonzero value
to the fund.

Finally, we argue that for application purposes, one does not need
to rely on asset pricing models to define an admissible performance
measure. Instead, using our characterizations, an evaluator can esti-
mate many admissible performance measures and NA-based measures
from the available market data and by solving certain systems of pric-
ing equations. For this purpose, we offer implementation guidelines
and use a set of mutual fund data from Morning Star Inc. to illus-
trate the performance evaluation methods that result from our general
analysis. As pointed out later, our “look into the data for performance
measures” approach has quite a few advantages over existing ones.
Most notably, it renders the evaluation measures independent of any
asset pricing model.

This article is organized as follows. In Section 1, we outline the basic
framework and define and characterize admissible performance mea-
sures. Section 2 studies properties of admissible measures. Section 3
discusses the extension of our analysis to allowing public information-
conditioned portfolios as performance reference. With this extension,
one can use the resulting measures to distinguish managers who pos-
sess only public information from those with both access to better
information sources and more portfolio management skills. Section
4 offers estimation guidelines. Section 5 provides performance eval-

3 See, among others, Admati et al. (1986), Admati and Ross (1985), Connor and Korajczyk (1986),
and Grinblatt and Titman (1989), for further discussion.
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uation results for a group of mutual funds. Section 6 concludes the
article. The proof of each result is given in Appendix A.

1. Admissible Performance Measures

Consider a single-period market, with the understanding that this sin-
gle period is taken as a snapshot of a multiperiod securities market.
The basic setup consists of a set of traded securities, the investing
public and, for simplicity, one privately informed portfolio manager.

Take as given N securities that constitute the investment universe
for all investors including the portfolio manager, whose time-0 prices
are normalized to one dollar and whose time-1 gross returns are de-
noted by xn, for n ∈ N , where N is also the index set of the securities.
Assume that the securities market is incomplete and that each xn is
a mean-square integrable random variable defined on some proba-
bility space {Ä, F,Pr }, where Ä is the set of states of nature, F a
sigma field on Ä, and Pr the probability measure. For convenience,
let L2 be the linear space of mean-square integrable random variables
on {Ä, F,Pr }. Following convention, for any random variable x , we
write x ≥ 0 if Pr (x ≥ 0) = 1; x > 0 if x ≥ 0 and Pr (x 6= 0) > 0; and
x À 0 if x > 0 and Pr (x 6= 0) = 1.

The investing public is comprised of a large set of investors that
possess strictly increasing, continuous and convex preferences over
future portfolio payoffs. For now, each individual investor (other than
the portfolio manager) is taken to be uninformed, which is relaxed
later when we discuss conditional performance measures. Then, for
the investing public, the set of achievable gross returns per dollar
invested is simply

R0 ≡
{

x ∈ L2: ∃α ∈ <N s.t.
∑
n∈N

αn = 1 and
∑
n∈N

αnxn = x

}
,

that is, the uninformed investors can only form nothing more than
constant-composition portfolios. In this sense, their investment strate-
gies are quite passive.

The informed portfolio manager, however, faces much better in-
vestment opportunities. Assume that the manager observes some pri-
vate signal s, which contains information either about particular firms
or about the entire securities market or both. Using this information
and starting with one dollar, the manager can choose any portfolio,
α(s) ≡ (α1(s), . . . , αN (s))′, such that

∑
n∈N αn(s) = 1 and

∑
n∈N αn(s)

xn ∈ L2, where the amount invested in security n, αn(s), is a func-
tion of the signal s. The restriction that

∑
n∈N αn(s) xn ∈ L2 means

516



Portfolio Performance Measurement

at least two things. First, the manager cannot fully observe at time
0 what everyone else will be able to observe at time 1. Second, the
manager is not allowed to adopt strategies that generate future re-
turns with unbounded variation, that is, every feasible strategy should
lead to a square-integrable portfolio return.4 The portfolio weight
function, αn(s), can be quite nonlinear, and many types of dynamic
portfolio strategy are allowed here. For instance, Merton (1981) ex-
amines an option-like trading strategy in which the investor puts all
the money in the market portfolio if he sees the market return to
be high and otherwise all the money in the riskfree asset. Clearly, if
the market signal is what the manager observes, he can adopt this
strategy. Given the private signal, thus the manager’s opportunity set
is

Rs ≡
{

x ∈ L2: ∃α(s) s.t.
∑
n∈N

αn(s) = 1 and
∑
n∈N

αn(s) xn = x

}
.

Since the informed manager can always choose to ignore the signal
and adopt a constant-composition portfolio strategy, it is true that the
set Rs contains the set R0, which means the informed manager should
in general do better than an uninformed individual investor. But there
is no guarantee that the manager will choose the best dynamic strategy
in Rs and make the most out of the signal. Therefore, possessing better
information does not necessarily imply better performance.

To formally define the performance measurement problem, sup-
pose that the manager has adopted some strategy that leads to a port-
folio return xs ∈ Rs . As in the existing performance literature, use the
uninformed set R0 as the performance benchmark. That is, any man-
aged portfolio that does no better and no worse than any portfolio
in R0 deserves a zero performance ranking, while any portfolio do-
ing better than some portfolio in R0 deserves a positive performance
ranking. With this in mind, take an arbitrary gross return x ′ ∈ R0 as a
reference and subtract it from the managed return xs to get the excess
return: (xs − x ′). Then, the performance measurement problem is to
find some function λ(·): L2 → < such that λ(xs − x ′) determines the
performance for the managed portfolio and λ satisfies the following
four conditions:

4 This is an important technical requirement in order for our discussion to stay within the L2

framework and for the standard statistical techniques to be used in empirical performance eval-
uation (since most statistical tools are developed assuming the L2 framework). It nonetheless
limits the set of admissible dynamic strategies. For instance, for certain square-integrable portfo-
lio strategies [i.e., αn(s) ∈ L2], the resulting portfolio returns will be absolute-integrable but not
square-integrable (i.e., in L1 but not in L2).
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Condition I. If the managed return, xs, lies in the uninformed set R0,
then it is given a zero performance: λ(xs − x ′) = 0. That is, for every
x ∈ R0, λ(x − x ′) = 0.

Condition II. The function λ is linear. In other words, suppose there
are two managed portfolios with returns xs ′ and xs ′′ ; then, if a third
portfolio is a constant combination of the two given by θxs ′ + (1 −
θ)xs ′′ , for any constant θ ∈ <, the performance of the third portfolio
is determined by the same constant combination of the two portfolios’
performance values:

λ(θ xs ′ + [1− θ ] xs ′′ − x ′) = θ λ(xs ′ − x ′)+ [1− θ ] λ(xs ′′ − x ′).

Condition III. The function λ is continuous. That is, if the gross re-
turns produced by two managed portfolios are arbitrarily close (in the
mean-square metric), the performance values assigned to them will
also be arbitrarily close: for any managed fund xs ′ ∈ L2 and any real
number ε > 0, there is a δ > 0 such that | λ(xs ′ −x ′)−λ(xs ′′ −x ′) |< ε

for all (managed) portfolio returns xs ′′ satisfying ‖xs ′ −xs ′′ ‖ < δ, where
‖ · ‖ is the mean-square norm defined by ‖x‖2 ≡ E (x2).

Condition IV. The function λ is nontrivial, in the sense that if λwould
be used to value any traded security, it would not assign a zero value,
that is, for any n ∈ N , λ(xn) 6= 0.

These four conditions constitute a minimum set of requirements
for any performance measure. Condition I states that any managed
portfolio return that is achievable by an uninformed investor is auto-
matically assigned zero performance. This condition is implicit in most
existing performance measures. For instance, according to the Jensen
measure, any portfolio on the security market line is assigned zero
performance. According to Sharpe’s (1992) style analysis, any man-
ager whose portfolio is a linear combination of the reference funds
is classified as having no ability. Condition II makes sense because a
simple rescaling of a fund or a simple mix of two funds should not
by itself improve one’s performance ranking. Any change in perfor-
mance ranking has to result from additional information. Condition
III ensures that two managers producing indistinguishable returns are
ranked the same. Condition IV guarantees that if a fund’s excess re-
turn was proportional to the gross return on some security, this fund
would not be assigned zero performance.

Conditions I and II imply that the choice of the reference return x ′
is inconsequential and any gross return in R0 will serve the purpose.
To briefly see this, take any x ′′ ∈ R0. By Condition I, λ(x ′′ − x ′) = 0,
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which means, by Condition II, λ(x ′′) = λ(x ′). Thus, λ(xs − x ′) =
λ(xs) − λ(x ′) = λ(xs − x ′′). For this reason, we do not restrict the
choice of the reference return to any particular payoff in R0, even
though in practice a common choice is the riskfree asset.

A function λ is said to be an admissible performance measure if
it satisfies Conditions I through IV. Next, we seek to identify market
conditions under which such measures exist.

Definition 1. Let M be the linear span of R0: M ≡ {∑n∈N αnxn: αn ∈
< }. Then, the law of one price (LOP) is said to hold on the securities
market if, for every x ∈ M, the set

{∑
n∈N αn: αn ∈ < and

∑
n∈N αnxn

= x } is a singleton.

The LOP requires each payoff to have only one price, regardless
of the portfolio composition that generates it. For more characteriza-
tions of the LOP, see Chen and Knez (1994, 1995) and Hansen and
Jagannathan (1991, 1994).

Theorem 1. There is an admissible performance measure if and only
if the securities market supports the LOP.

The LOP is thus a necessary and sufficient market condition for
the existence of an admissible performance measure. For this rea-
son, we also refer to admissible performance measures as LOP-based
measures, whenever stating so adds convenience.

Theorem 2. A function λ is an admissible performance measure if
and only if there is some d ∈ L2 such that d represents the function λ
in the sense that

λ(x − x ′) = E [d (x − x ′)] ∀x ∈ L2, (1)

and d satisfies

E (d xn) = k ∀n ∈ N , (2)

for some k ∈ < and k 6= 0. Furthermore, each admissible performance
measure λ is uniquely represented by such a d satisfying Equation (2).

Every admissible measure must therefore be representable by some
d as shown in Equation (1) and only functions that are representable
in this way can be admissible performance measures.5 This is a rather

5 In representing every admissible performance measure in the inner product format, some sort of
risk adjustment is implicitly done. To see this, expand Equation (1) to get

λ(xs − x ′) = E (d) E (xs − x ′)+ Cov(d, xs − x ′),

where Cov(·, ·) is the covariance operator. The covariance term in this expression reflects how
risk is rewarded or adjusted.
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strong characterization. Many known performance measures fall into
this admissible class. In particular, since the LOP is a weaker market
condition than general equilibrium, most equilibrium-based perfor-
mance measures are admissible.

Example 1. The Jensen measure. Based on the CAPM, Jensen’s α

measure is

J (xs) ≡ [E (xs)− x0]− Cov(xs, xm)

σ 2
m

[E (xm)− x0],

where x0 and xm are, respectively, the riskfree gross return and the
gross return on the market portfolio, and σm is the standard deviation
of xm. From Dybvig and Ingersoll (1982), the stochastic discount factor
implied by the CAPM is given by

dj = 1

x0

(
1− E (xm)− x0

σ 2
m

[xm − E (xm)]

)
. (3)

It is then straightforward to verify that

J (xs) = x0 E [dj (xs − x0)] = E [d ′j (xs − x0)], (4)

where the riskfree return is chosen as the reference return and d ′j ≡
x0 dj . The Jensen performance measure is representable by the d ′j given
above and thus admissible.

Example 2. The APT-based performance measure [Connor and Ko-
rajczyk (1986) and Lehmann and Modest (1987)]. Suppose there are K
orthogonal factors fk , k = 1, . . . ,K . Following Connor and Korajczyk
(1986), the APT-based measure is defined as

JAPT (xs) ≡ [E (xs)− x0]−
K∑

k=1

bkγk,

where bk is the k-th factor beta of xs and γk is the k-th factor premium.
Chen and Knez (1994, Theorem 2.1) show that the APT is equivalent
to having a stochastic discount factor exactly representable as a linear
combination of the K factors:

d ′ =
K∑

k=1

βk fk, (5)

for some βk ∈ <. Using the proof of Theorem 2.1 in Chen and Knez
(1994), one can verify that JAPT (xs) = x0 E [d ′ (xs − x0)]. Thus, the
APT-based measure is also admissible in our sense.
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Example 3. The Grinblatt and Titman (1989) period weighting mea-
sures. Grinblatt and Titman propose the following performance mea-
sures:

JGT ≡
T∑

t=1

wt (xs,t − x0,t ),

subject to the constraint that
∑T

t=1 wt = 1 and plim[
∑T

t=1 wt rE ,t ] = 0,
where T is the number of sample periods, (xs,t − x0,t ) is the period-
t excess return on the managed fund over the riskfree rate, wt is the
weight assigned to period t, and rE ,t is the excess return on some mean-
variance efficient portfolio. It is clear that depending on how the period
weights are chosen, the resulting performance measure may not be
admissible in our sense, because it may not necessarily assign a zero
performance to every uninformed portfolio in R0 (i.e., Condition I may
be violated). However, if an additional requirement is met, that is, the
period weights wt satisfy

T∑
t=1

wt (xn,t − x0,t ) = 0, for each traded security n ∈ N , (6)

then the resulting function JGT will define an admissible performance
measure.

Example 4. The Glosten and Jagannathan (1994) performance mea-
sures. Glosten and Jagannathan use the intertemporal marginal rates
of substitution (IMRS) from each investor’s consumption portfolio choice
problem as the basis to define a class of performance measures:

JG J (xs) ≡ E [mi (xs − x0)], (7)

where mi is investor i’s IMRS.6 By the first-order condition of each
investor’s problem, the function JG J must satisfy Condition I and hence
each JG J is an admissible performance measure that is representable
by mi.

Another popular measure, the Sharpe measure, captures the man-
ager’s ability to diversify away idiosyncratic risks, and it does not
assign the same performance ranking to every uninformed portfolio
in R0, which implies that the Sharpe measure is not an admissible per-
formance measure in our sense (because it violates Condition I). The

6 Cumby and Glen (1990) use the IMRS of some investor with a power utility function to determine
the period weights in their implementation of the Grinblatt and Titman (1989) period weight-
ing measures. In this sense, their measure also falls into this class of IMRS-based performance
measures.
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purpose of this measure is thus different and it is not supposed to re-
flect whether the manager has superior information. The Sharpe mea-
sure is ideal, for instance, for ranking uninformed portfolios within
R0.

The performance measures given in the above examples are only
a few out of infinitely many admissible ones. The set of all admissible
performance measures is completely identified by

D ≡ {d ∈ L2: d satisfies the equation system in Equation (2)

for some k ∈ <}.
Each d ∈ D defines a performance measure λ as in Equation (1). For
instance, the dj in Equation (3), the d ′ in Equation (5), and the mi in
Equation (7) are all in D. The set D is infinite. To see this, suppose
that d is in D. Then, as can be checked, θ d ∈ D for every nonzero
scaler θ ∈ <.

Let D be the set of random variables d ∈ L2 satisfying

E (d xn) = 1 ∀n ∈ N . (8)

Following Hansen and Jagannathan (1991), we refer to each member
d ∈ D as a stochastic discount factor. Since Equation (8) is a special
case of Equation (2), D is clearly a subset of D and each d ∈ D defines
an admissible performance measure. This subset has two distinctive
features. First, the larger set D can be obtained by rescaling every
stochastic discount factor in D: D = {θ d : d ∈ D and for any nonzero
θ ∈ <}. Thus, the set D provides sufficient information about D. Sec-
ond, since the time-0 price of each gross return xn is one dollar,
Equation (8) implies that each stochastic discount factor d ∈ D actu-
ally prices every traded security consistently with the market. It then
becomes natural to focus attention on the basic set D. In the set D
there is one unique stochastic discount factor, denoted by d∗, that is in
both D and the linear span M . Properties of this d∗ have been exten-
sively studied by Chamberlain and Rothschild (1983), Chen and Knez
(1994, 1995), Hansen and Jagannathan (1991, 1994), and Hansen and
Richard (1987). For example, every stochastic discount factor d ∈ D
can be decomposed as d = d∗ + ε, for some ε ∈ L2 that is orthog-
onal to every xn. As seen shortly, this d∗ is of particular interest for
performance evaluation.

As far as performance measurement is concerned, each admissible
measure in D can be used in empirical implementations, except that
some of the measures will require stronger economic assumptions. For
instance, the Jensen measure requires the CAPM assumptions to hold;
and the APT-based measures depend on whether the assumed factor
structure for asset returns is correct. Certain assumptions underlying
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these and other related performance measures may not be empirically
supported. An alternative to these “parametric” performance measure-
ment methods is to look into the security price data and identify ad-
missible performance measures from there. Literally speaking, every
stochastic discount factor in D, and hence the resulting performance
measure, can be obtained by solving the equation system in Equation
(2) or (8). In doing so, the only market condition required is the LOP
holding. This alternative approach allows performance measurement
to be independent of the assumptions that come with an asset pricing
model. One can, for instance, use the performance measure defined
by d∗ since d∗ is easily estimable. We will return to this topic in later
sections.

Conditions I through IV do not rule out the possibility that well-
managed portfolios may actually be assigned a negative performance.
To see this, suppose the managed return is such that (xs − x ′) > 0,
for some reference x ′ ∈ R0, that is, xs dominates x ′ even though the
initial costs for both gross returns are one dollar. Clearly, the man-
ager should be given a positive ranking. But, Conditions I through
IV together cannot guarantee it. For example, the Jensen measure is
admissible, but this measure is known to have the potential to assign
negative performance to superior managers.7 To avoid this undesir-
able potential, we impose an additional condition:

Condition V. The candidate performance measure λ is positive, that
is, λ(xs − x ′) ≥ 0 whenever xs − x ′ ≥ 0 and λ(xs − x ′) > 0 whenever
xs − x ′ > 0.

A function λ is then said to be an admissible positive performance
measure if it satisfies Conditions I through V.

Definition 2. The securities market is said to offer no arbitrage op-
portunity if, for every positive payoff x ∈ M such that x > 0, there
exists no portfolio vector α ∈ <N such that (i)

∑
n∈N αnxn = x and (ii)∑

n∈N αn ≤ 0, that is, every positive payoff has a positive price.

Theorem 3. Suppose that there is some traded security xn whose gross
return is positive almost surely (e.g., the riskfree asset): xn À 0. Then
there exists an admissible positive performance measure if and only
if the securities market is free of arbitrage opportunities. Furthermore,

7 Dybvig and Ingersoll (1982) found that the stochastic discount factor dj embedded in the CAPM
takes negative values in some states of nature. Then, given the relationship between the Jensen
measure and dj as determined in Equation (4), it is not surprising that the Jensen measure may
assign negative performance to superior managers. See Admati and Ross (1985), Dybvig and Ross
(1985), and Jensen (1968, 1969) for more discussion on this point.
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any function λ is an admissible positive performance measure if and
only if there are a constant η > 0 and a positive stochastic discount
factor d+ ∈ D, such that d+ À 0 and

λ(xs−x ′) = η E [d+(xs−x ′)] for every possible return xs ∈ L2. (9)

Admissible positive performance measures can be found when and
only when there is no arbitrage opportunity, and every such measure
has to be representable by some positive stochastic discount factor
d+. For this reason, we also refer to such performance measures as
NA-based measures (to distinguish them from the LOP-based mea-
sures). To give a couple of known examples, the IMRS-based perfor-
mance measures of Cumby and Glen (1990) and Glosten and Jagan-
nathan (1994) are positive and admissible—so long as the equilibrium
assumptions for the IMRS hold in the economy; the period weight-
ing measures of Grinblatt and Titman (1989) present another such
example—so long as the period weights satisfy Equation (6).

As in the case of the LOP-based measures, the set of all NA-based
measures can be identified independent of any asset pricing model.
According to Theorem 3, this set is completely represented by the set
D+, defined as

D+ ≡ {d+ ∈ L2: d+ À 0 and d+ satisfies Equation (8)}. (10)

D+ contains all positive stochastic discount factors, and it is a subset
of D. Each d+ together with a positive constant η defines an admis-
sible positive performance measure as in Equation (9). Therefore, for
empirical performance studies, one only needs to estimate a d+ by us-
ing Equation (8) and substituting it into Equation (9), from which one
can next go on computing the performance value for any managed
fund. We provide a detailed estimation procedure in Section 3.

2. Properties of Admissible Performance Measures

In the preceding section, it was established that the set of admissible
performance measures is infinite. Among other things, we address in
this section two main questions. First, to what extent will the per-
formance ranking of managed funds depend on the choice of per-
formance measure? Second, suppose that a managed portfolio is as-
signed a positive performance by some admissible positive measure;
what does this positive performance value mean?

2.1 The LOP-based measures
Consider a manager who observes a signal s and whose portfolio
return per dollar invested, xs , is not in the uninformed set R0. In other
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words, xs is not achievable by any uninformed investor. Then, what
performance value will this manager be given? The answer depends
on which admissible performance measure is used in the evaluation.

First, suppose that there is some admissible measure λ that assigns a
nonzero performance to it: λ(xs−x ′) = v, for some constant v 6= 0 and
any reference return x ′ ∈ R0. According to Theorem 2, a rescaling of
λ gives another admissible performance measure, that is, h λ(·) is also
admissible, for any nonzero constant h ∈ <. Then, for any number
v ′ 6= 0, we can choose h = v ′

v and arrive at a performance value given

by h λ(xs − x ′) = v ′
v v = v ′. This is to say that any performance value

can be assigned to this manager by suitably choosing the performance
measure.

One may argue that the above pessimistic conclusion is due to the
fact that any rescaling of an admissible performance measure gener-
ates another admissible one. As observed earlier, the set D contains
all admissible performance measures and it is a rescaled version of
the set of stochastic discount factors, D. The latter set captures all
the information relevant for performance evaluation and no stochas-
tic discount factor in D is a rescaling of another member in D. Then,
will the above conclusion change if the evaluator only chooses a per-
formance measure from those defined by the discount factors in D ?
Unfortunately, as the proof of the next theorem demonstrates, the an-
swer will stay intact and the multiplicity of admissible performance
measures thus makes performance evaluation difficult.

Theorem 4. If the managed gross return xs is achievable by an un-
informed investor (i.e., xs ∈ R0), all admissible performance mea-
sures will assign zero performance to it. Conversely, if every admissible
performance measure assigns zero performance to the fund, xs must
be achievable by every uninformed investor. However, when xs is not
achievable by any uninformed investor (i.e., xs 6∈ R0), then, for any
desired performance value v ∈ <, there is an admissible performance
measure λ that assigns this performance v to the informed manager:
λ(xs − x ′) = v, for any reference return x ′ ∈ R0.

The first part of the above result states that a managed fund xs is in
the uninformed set R0 if and only if every admissible measure gives
it a zero performance ranking. This characterization is quite useful
for empirical work. To see this, fix a managed fund. Then, if there is
any admissible measure that assigns a nonzero performance to it, the
fund’s return must lie outside of the set R0 and the fund must there-
fore be providing a service by enlarging the uninformed investors’
opportunity set. On the other hand, if one picks some measure and
finds that the measure gives zero performance to the fund, this by
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itself does not represent enough evidence to conclude that the fund
does not help enlarge the opportunity set faced by investors, because
there may be other admissible measures that will assign nonzero per-
formance values to it. This suggests that for empirical work one may
need to use as many performance measures as possible to evaluate a
mutual fund. This is sort of the positive side of the above theorem.

The second part of Theorem 4 is rather negative about perfor-
mance evaluation. It goes beyond the negative results of Roll (1978).
Roll shows that if one uses an inefficient market index to stand for the
market portfolio in the Jensen measure, any performance value is pos-
sible even for an arbitrary uninformed portfolio. His point concerns
mostly the use of inefficient market indices. Using our terminology,
the Jensen measure will no longer be admissible when the betas are
obtained using an inefficient market index, since in that case Condi-
tion I will be violated by the resulting Jensen measure. For this reason,
the choice of an inefficient market index will only make the Jensen
measure-based performance evaluation arbitrary. Theorem 4, how-
ever, says more than this. It says that even if an evaluator chooses
among admissible performance measures, any performance value is
possible for a managed portfolio return lying outside of R0.

Theorem 5. Suppose that a performance evaluator is to rank two
managed funds respectively with gross returns xs and xs ′′ , both of which
are not achievable by uninformed investors: xs 6∈ R0 and xs ′′ 6∈ R0.
Further, suppose the noises in the two private signals, s and s ′′, are not
perfectly correlated. Then, when one admissible performance measure,
say λ, assigns a higher performance to fund xs, that is, λ(xs − x ′) >
λ(xs ′′ −x ′) for any reference return x ′, there must exist another admis-
sible measure λ′ that reverses the ranking: λ′(xs − x ′) < λ′(xs ′′ − x ′).

The relative ranking of two funds according to one admissible mea-
sure can thus be reversed by another admissible measure. This result
is also similar in spirit to, but different from, a related result in Roll
(1978). The comments preceding Theorem 5 apply here as well.

The above two results together reinforce our earlier argument that
Conditions I through IV may not impose a strong enough set of re-
quirements for performance measures. For instance, not every admis-
sible performance measure under these conditions will be increasing
in the managed excess return (xs−x ′). That is, suppose there are two
funds with gross returns xs and xs ′′ , such that (xs − x ′) > (xs” − x ′),
for any reference return x ′; Then, some admissible performance mea-
sures may even rank fund xs lower than fund xs”. Nonetheless, there
are widely used performance measures that only satisfy Conditions
I through IV, but not Condition V. The Jensen measure discussed in
Example 1 is one such example. Therefore, if one is willing to accept
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and use the Jensen measure, one should not have problems using any
measure satisfying Conditions I through IV. But, there are too many
functions that satisfy these conditions. In order to get around these
negative results, we have to impose more conditions such that the set
of the then admissible performance measures becomes smaller.

2.2 The NA-based measures
The NA-based performance measures will still assign different perfor-
mance values to the same managed portfolio, but they nonetheless
possess several more desirable properties. First, observe the follow-
ing properties which are not shared by the LOP-based performance
measures:

1. If a managed fund xs is such that xs − x ′ > 0 for some reference
return x ′ ∈ R0, then every NA-based performance measure will assign
a positive performance to this fund. This uniformity in sign among all
NA-based measures is a result of Condition V.

2. If xs − x ′ < 0 for some reference return x ′, then every NA-based
measure will assign to it a negative performance. This follows from
Theorem 3.

3. Since every NA-based measure λ+ can be represented as λ(xs −
x ′) = η E [d+ (xs − x ′)], for some constant η > 0 and some d+ ∈ D+
(Theorem 3), every NA-based performance measure is strictly increas-
ing in the managed excess return (xs −x ′). This property is useful for
ranking funds relative to each other. If one fund (xs) does better than
another (xs”) in generating excess returns [i.e., (xs − x ′) > (xs” − x ′)],
then each NA-based measure will rank the former higher than the
latter.

More generally, performance values that can be assigned to a man-
aged fund by an NA-based measure will lie in a range. Depending on
the nature of the fund, this range can be a small segment of the real
line or as wide as the entire real line (as in the case of the LOP-based
measures). Thus, we have four different cases. (i) Suppose that there
are two NA-based measures, λ+ and ψ+, one assigning a positive
and the other assigning a negative performance to the managed fund
xs : λ+(xs − x ′) > 0 and ψ+(xs − x ′) < 0. Since both η λ+ and η ψ+
are still admissible positive performance measures for any positive
number η > 0, the range of possible performance values assigned by
the NA-based measures is the entire real line <. (ii) If there is some
NA-based measure that assigns a positive performance to xs but no
NA-based measure gives it a negative performance, then the range of
possible performance values assigned to xs by any NA-based measure
will be the positive segment of the real line. The justification is the
same as in case (i). (iii) If there is some NA-based measure that as-
signs a negative performance to xs but no NA-based measure gives it
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a positive performance, then the range of possible performance val-
ues will be the negative segment of the real line. (iv) Suppose that the
performance evaluator only chooses a measure from those defined by
the positive discount factors in D+. An acceptable justification for this
restriction is that every such d+ can price the traded securities consis-
tently with the market, while every other NA-based measure is only a
rescaled version of the NA-based measure defined by some d+ in D+.
Then, performance evaluation is much less arbitrary and the range of
possible performance values with these NA-based measures is a pos-
sibly open interval (`,u), with ` ≡ inf{E [d+ (xs − x ′)]: d+ ∈ D+} and
u ≡ sup{E [d+ (xs − x ′)]: d+ ∈ D+}. The convexity of the set D+ en-
sures that for any value between ` and u, there is a positive discount
factor that defines an NA-based measure assigning this performance
value to xs . See Kreps (1981) for a related discussion in a different
context.

Theorem 6. Let xs be the managed gross return and x ′ be any refer-
ence return.

(i) There exists an NA-based measure λ that assigns a positive perfor-
mance to the fund (i.e., λ(xs−x ′) > 0) if and only if there is an investor
in the monotonically increasing, convex and continuous preference
class who values xs more than any uninformed return in R0;

(ii) There exists an NA-based measure λ that assigns a negative
performance to the fund (i.e., λ(xs − x ′) < 0) if and only if there is
an investor in the monotonically increasing, convex and continuous
preference class who values xs less than any portfolio in R0.

Note that each d+ can be thought of as some investor’s IMRS and
hence each NA-based measure can be interpreted as some investor’s
marginal valuation function. Then, it may not be any surprise that
if a managed fund is ranked positively by some NA-based measure,
there must exist at least one investor who would like to hold more
of this fund rather than of any portfolio in R0. Conversely, if a fund
is valued by some investor over every uninformed portfolio, at least
the NA-based measure defined by this investor’s IMRS will rank the
fund positively. This result is quite encouraging since it ensures that
positive performance according to any NA-based measure certifies
superior portfolio service to the investor community.

Aided by Theorem 6, we can also interpret the performance value,
λ+(xs − x ′), as the “equilibrium management fee” that an uninformed
investor is willing to pay per dollar invested. To see this, suppose
λ+ can be represented by some positive d+ such that λ+(xs − x ′) =
E [d+ (xs−x ′)]. From the proof of Theorem 6, we can interpret this d+
as some investor’s intertemporal marginal rate of substitution. Then,
if E [d+ (xs − x ′)] > 0, this positive quantity indicates how much the
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investor’s total expected utility may increase at the margin when he
sells short one dollar of the reference portfolio x ′ and invests the
proceeds in the managed fund xs . In other words, E [d+ (xs − x ′)]
reflects the marginal value of the fund to the investor. This quantity
is in some sense a price for both the information s and the manager’s
skills in using it. For a discussion on equilibrium management fees,
see Merton (1981).

According to the second part of Theorem 6, negative performance
will be assigned to a managed fund by some NA-based measure when
and only when some investor in the stated class would rather sell
short the fund and invest more in any uninformed portfolio in R0.
Then, from this investor’s perspective, the manager has not used the
private information to this investor’s advantage and has produced an
inferior portfolio.

There can be managed funds that are assigned a positive perfor-
mance by some NA-based measures but a negative performance by
others. In that case, it means that such a fund is valued and appreci-
ated by some investors but disliked and not wanted by others. Given
that mutual funds are set up to satisfy different investor clienteles,
such an evaluation outcome may not be unrealistic.

Suppose in an empirical performance study one finds that an LOP-
based measure assigns a negative performance value to a given fund.
Then, is it possible for there to also exist an NA-based measure that
ranks the same fund positively? The answer is a definitive yes—as
long as there is an investor who values this fund more than any refer-
ence portfolio in R0. To see this, let xs be such a fund. By Theorem 4,
any negative performance can be assigned to xs by some LOP-based
measure. By Theorem 6, there is also an NA-based measure that ranks
this fund positively. Therefore, cases can arise in which an LOP-based
measure and an NA-based measure assign to the same fund perfor-
mance values of opposite signs. For an example, see the findings in
Section 5.

3. Extension to Public Information-Conditioned Benchmarks

In the discussion so far, the reference set of portfolio returns with
respect to which zero performance is determined has been the unin-
formed set R0. This has also been the general practice in the existing
literature. Recent empirical studies have, however, documented that
it is possible to use such public information as interest rates to fore-
cast stock returns. See, for example, Fama and Schwert (1977), Ferson
(1989), Ferson and Harvey (1991), Ferson and Korajczyk (1995), and
Keim and Stambaugh (1986). Breen, Glosten, and Jagannathan (1989)
show that managers who time using publicly available information
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will be classified by traditional evaluation methods as possessing su-
perior ability. In light of this, it is necessary to expand the performance
reference set from R0 to include all those returns that are achievable
using public information, so that managers who solely rely on pub-
lic information will be classified as zero performers and only those
who use private information efficiently will be classified as superior
managers.

To do this, suppose the public information signal p is coarser than
the manager’s private signal s. Accordingly, the set of gross returns
achievable with public information is

Rp ≡
{

x ∈ L2: ∃α(p) such that
∑
n∈N

αn(p) = 1

and
∑
n∈N

αn(p) xn = x

}
. (11)

Since the signal p is coarser than the manager’s s, we have R0 ⊂ Rp

⊂ Rs .
Aided with the tools from Hansen and Richard (1987), we can re-

place the reference set R0 in the previous sections by Rp and all the
results that we established will still hold, provided that appropriate
changes are made in the interpretation. In this case, Condition I is
replaced by requiring λ to satisfy

λ(xp − x ′) = 0, ∀xp ∈ Rp,

for any given reference return x ′ ∈ Rp . This ensures that managers
who rely on no more than public information will be given zero
performance. A function λ is said to be an admissible conditional
performance measure if it satisfies the extended Condition I and the
linearity, continuity, and nontriviality conditions.

The conditional counterpart to Theorem 2 is that a function λ is
an admissible conditional performance measure if and only if there is
some dp ∈ L2 such that

λ(x − x ′) = E [dp (x − x ′)] ∀x ∈ L2,

and

E (dp xp) = k ∀xp ∈ Rp,

for some k ∈ < and k 6= 0. For this reason, we sometimes refer to
such a measure as a conditional LOP-based measure. The conditional
counterpart to every other result holds as well. To save space, we
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omit the detailed discussion which would be a virtual repetition of
the preceding two sections.

In general, replacing the reference set R0 by the publicly informed
set Rp should mean a “tougher” benchmark for performance evalu-
ation. Only managers who use more than public information have
the potential to be assigned a positive performance by a conditional
performance measure. Does this imply that for a given fund, any con-
ditional measure will assign a performance value lower than what
an unconditional LOP-based measure does? Given the infinity of ad-
missible conditional and unconditional measures, the answer is again
negative. To see this, let xs be a managed fund such that no pub-
licly informed investor can achieve it with one initial dollar: xs 6∈ Rp .
Naturally, xs 6∈ R0. First, for an arbitrary negative number, there is
by Theorem 4 an unconditional LOP-based measure that assigns this
performance value to the fund (negative unconditional performance).
Next, for any positive number, there is, by the conditional counter-
part to Theorem 4, an admissible conditional measure that assigns
this positive performance to the same fund (positive conditional per-
formance). This explains the empirical finding by Ferson and Schadt
(1992) that for some funds performance switches from negative to
positive when they change from an unconditional measure to a con-
ditional one (also see our empirical results in Section 5). Therefore,
due to the nonuniqueness of admissible measures, switching from un-
conditional to conditional performance measures does not necessarily
mean lowering the performance ranking of every fund.

4. Implementing Performance Measurement Tests

The main message from the discussion so far seems quite negative
about performance evaluation. In the case of LOP-based measures,
basically nothing can be said about a manager’s ability, unless the
manager’s portfolio happens to lie in the span of the reference as-
sets. Since every performance value is possible for a managed fund
lying outside of the reference set, the relative ranking between two
funds also becomes quite arbitrary. With Condition V imposed, per-
formance evaluation is made less arbitrary, but still any performance
value within a certain range can be assigned to the same fund by the
choice of the right NA-based measure. In spite of the negative conclu-
sions, portfolio performance evaluation as a practical matter is, and
will always be, conducted so long as there is investment management.
For this reason, in what follows we present and illustrate the use of
several nonparametric performance evaluation procedures. We refer
to them as being nonparametric because the validity of these perfor-
mance measures does not depend on any parametric or equilibrium
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asset pricing model such as the CAPM and the consumption CAPM.
Rather, they rely only on either the LOP or the NA condition. In ad-
dition, as will become clear shortly, they also offer implementational
ease. We first discuss the issues involved in selecting the set of ref-
erence assets, and then describe detailed procedures for respectively
estimating a particular LOP-based and a particular NA-based measure.

4.1 Selecting the reference assets
There are two choices that must be made in specifying the set of ref-
erence assets. The first is how many assets to include in the reference
set. The second is which assets to include. While in theory this set
should include all assets available to the investing public, the econo-
metrician can only use at best a finite sample in the estimation. This
imposes limitations on the number of assets that the investigator can
include. The significance of this constraint depends on the estimation
procedure used. In the next subsection we describe the relationship
between the estimation method and the number of assets that may be
included.

The decision of which assets to include is guided first by the type
of assets in which the fund invests. That is, it should at least include
the same assets that comprise the fund under evaluation. This is be-
cause the mission of performance assessment is to investigate whether
the investment opportunity set has been significantly enlarged by the
dynamic trading strategy of the fund. If we find the investment op-
portunity set has been enlarged, we want this to be attributed to the
efforts of the fund manager as embodied in the trading strategy. In
other words, we do not want the existence of performance to be
caused by the inclusion of certain reference assets and the exclusion
of others. For example, a small-firm fund invests mainly in firms with
market capitalizations less than $1 billion. This implies that the set of
reference assets should include small cap stocks when such a mutual
fund is evaluated. In addition, many funds have a significant portion
of their capital in cash such as short-term Treasury bonds. Thus, for
the evaluation of those funds, Treasury securities may be included in
the reference set.

In theory, the reference assets should include more than just the
subset from which the informed manager has decided to choose. Typ-
ically, evaluation results depend on the set of reference assets used.
For a good example, Elton et al. (1993) explicitly investigate the sensi-
tivity of performance assessment to non-S&P stocks and bonds. They
find that both security types are significant factors for the correct as-
sessment of performance. As in other empirical studies, a trade-off
has to be made here between economic and statistical power as well.
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4.2 Test methods
In this subsection we discuss the econometric methods used to con-
duct performance evaluation.8 Recall from Section 1 that each stochas-
tic discount factor in D and D+ defines an admissible measure. Hansen
and Jagannathan (1991, 1994) have put forward two particular stochas-
tic discount factors, denoted by d∗ and d+, where d+ is as estimated
in Hansen and Jagannathan (1991). Since these two discount factors
are probably among the most familiar ones, we choose to focus on
the two measures, denoted λ and λ+, that they respectively define.

4.2.1 Estimating λ and λ+. Assume that asset price processes are
sufficiently regular that a version of the time-series law of large num-
bers applies so that the sample moments converge to the correspond-
ing population moments. For this reason, unless it is necessary, we
omit the time subscripts. Depending on the context, we use X to stand
for either the N × 1 vector of gross returns on N reference assets or
the N × T matrix of time-series observations on the gross returns of
the assets. In the latter case, Xt stands for the N × 1 vector of gross
returns on the N assets during the t -th period. Assume that E [XX ′] is
nonsingular.

Method 1. By construction the stochastic discount factor d∗ is the
payoff on some constant composition portfolio whose weights are
given by some α∗ in <N , that is, d∗ = X ′ α∗, satisfying

1N = E [X d∗] = E [X X ′α∗], (12)

where 1N is an N × 1 vector of 1s. Thus, α∗ = E [XX ′]−1 1N . For a
managed fund with gross return xs , its LOP-based performance value
is

λ = E [xs d∗]− 1 = E [xs X ′α∗]− 1. (13)

The performance test is on whether λ is significantly different from
zero, which is conducted in two steps:

Step 1. Analytically compute d∗ = X ′α∗, where α∗ = E [XX ′]−1 1N .
For the t -th period, the performance value for xs is given by

λ̂t (α
∗) = xs,t (X

′
t α
∗)− 1. (14)

8 The methods described here employ a standard GMM procedure so as to accommodate het-
eroskedasticity and serial correlation issues. For discussions on using GMM to estimate stochastic
discount factors, see Chen and Knez (1994, 1995), Cochrane and Hansen (1992), Knez (1994), and
Snow (1991). While there are good reasons to use GMM for this estimation problem, theory does
not require the use of this estimation procedure. See He, Ng, and Zhang (1994) for an alternative
method of estimating stochastic discount factors.
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Step 2. To test if λ̂t is significantly different from zero, form a hT

statistic:

hT = T

[
1

T

T∑
t=1

λ̂t (α
∗)

]
WT

[
1

T

T∑
t=1

λ̂t (α
∗)

]
, (15)

where WT = 1
σ̂ 2
λ

, with σ̂ 2
λ being a consistent estimate of the variance

of λ̂ [see Newey and West (1987)]. Under the null hypothesis that
E [λ̂t (α

∗)] is zero, hT is asymptotically χ2-distributed with one degree
of freedom.

Tests on whether the NA-based measure, λ+, is significantly differ-
ent from zero can be conducted by replacing d∗ in Equations (12)
through (14) with d+. The counterpart to Equation (12) is

E [X (X ′ α)+] = 1N , (16)

where (X ′ α∗)+ ≡ max(X ′ α∗, 0) and (·)+ stands for the “truncation
at zero” nonnegative operator. The estimation of d+ = (X ′ α∗)+ is
significantly more complicated than that of d∗, because of the non-
linear representation in α. Hansen and Jagannathan (1991) develop a
procedure in which the objective is to search for a portfolio payoff
whose nonnegative truncation satisfies Equation (16) and that has the
minimum second moment. Realizing that one does not have to use
this minimum second-moment d+ and that any d+ satisfying Equation
(16) is equally qualified for performance evaluation, we nonetheless
choose to adopt the Hansen and Jagannathan procedure to gener-
ate a d+ for performance evaluation. See Hansen and Jagannathan
(1991) for details. The hT statistic for the measure λ+ implied by this
minimum second-moment d+ can be similarly defined as for the LOP-
based measure.

Since d∗ can be computed analytically, a relatively large number
of reference assets can be included in X—so long as the second-
moment matrix, E (X X ′), can be conveniently inverted. In contrast,
since the estimation of d+ involves a system of equations nonlinear
in α, only a relatively small number of reference assets can be included
in conducting performance evaluations using the NA-based measure.

Method 2. The procedure in Method 1 involves first computing the
stochastic discount factor and then using it to evaluate the perfor-
mance of a mutual fund. One drawback of the test statistic hT is that
it ignores the potential sampling error in computing d∗ from a finite
number of observations. An alternative procedure is to simultaneously
estimate α∗ and test if λ is significantly different from zero.

Step 1. Form the system of moment equations. Let X̃ be an (N+1)×1
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vector, the first N elements of which are comprised of the N elements
in X and the last element of which is the return on the candidate
mutual fund, that is, X̃ = (X ′, xs)

′. Then, let α ≡ (αx , αs)′, where
αx ∈ <N and αs ∈ <, and form the following system of (N + 1)
equations:

E
[
X̃ (X̃ ′ α)

] = 1N+1. (17)

The test on whether λ is significantly different from zero is conducted
by testing if there is a solution, α∗, to Equation (17) such that the
corresponding component α∗,s is zero.

Step 2. Note that the system of equations in Equation (17) has
N + 1 moment conditions and N + 1 parameters to be estimated.
However, since αs is hypothesized to be zero, this system is over-
identified, which permits the use of a GMM procedure [see Hansen
(1982) and Hansen and Singleton (1982)]. Define

λt (α) ≡ X̃t X̃ ′t α − 1N+1. (18)

Equation (18) implies that, when evaluated at α = α∗, E [λt (α
∗)] = 0.

Step 3. Form the sample moments and estimate the parameters. This
is done by replacing the population mean in Equation (17) with the
sample mean:

λ̄(α) ≡
(

T∑
t=1

X̃t X̃ ′t α − 1N+1

)
/T , (19)

and choose α to minimize the scaled J -statistic given by

JT ≡ T λ̄(α)′W λ̄(α),

where W is a symmetric positive, definite weighting matrix. When
the set of overidentifying restrictions holds, JT is approximately χ2-
distributed with one degree of freedom.

To test if the performance value for xs is significantly different from
zero according to the NA-based measure, we need to replace (X̃ ′ α)
in Equation (17) with (X̃ ′ α)+. The test is then on whether there is a
solution, α∗, to

E
[
X̃ (X̃ ′ α)+

] = 1N+1,

such that the (N +1) component, α∗,s , equals 0. The J -statistic for this
case can be formed as before with some minor adjustments.

Note that this method also has a single degree of freedom. How-
ever, in this method the number of reference assets that can be in-
cluded should in general be smaller than in Method 1, out of the
consideration that there is a trade-off between the number of mo-
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ment conditions used in estimation and the precision with which the
optimal weighting matrix may be estimated.9

4.2.2 Estimating conditional λ. This subsection describes how to
estimate and test the significance of λ using conditional performance
measures. Let d∗p represent a stochastic discount factor that can con-
sistently price every payoff generated by a public information-based
dynamic trading strategy.10 In order to compute d∗p , in principle we
should include all publicly observable information and consider all
feasible payoffs conditioned on such information. However, only a
subset of such information is available to the econometrician. Denote
by Zt the column vector of K information variables observable by the
econometrician as of period t . To construct d∗p we first need to identify
the reference set of returns, Rp . For this purpose we follow Hansen
and Singleton (1982) in assuming that expectations conditional on
public information are linear in the information variables in Zt . In
effect, this means that all public information-conditioned reference
returns are generated with linear trading strategies. That is,

Rp,t+1 =
{∑

n∈N

(α′n Zt ) xn,t+1: αn ∈ <K , ∀n,

such that
∑
n∈N

α′n Zt = 1

}
,

where (α′n Zt ) is the Zt -conditioned portfolio weight in security n and,
for convenience of discussion, a time dimension is explicitly incorpo-
rated, with Rp,t+1 being the set of time (t+1) gross returns achievable
using public information. Let α be an N ×K matrix, with its n-th row
being the transpose of the column vector αn. Since we choose d∗p,t+1
to be the stochastic discount factor that lies in the linear span of Rp,t+1,
there must be some matrix α∗ ∈ <N K such that

d∗p,t+1 = X ′t+1 α
∗ Zt , (20)

and that

E
[
(X ′t+1α

′ Zt )X ′t+1 α
∗ Zt

] = 1, (21)

9 In the context of estimating a stochastic volatility model, Andersen and Sorensen (1994) recently
used Monte Carlo simulations to argue that (i) the number of moment conditions should be small
(e.g., 14) for typical sample sizes and (ii) when too many moment conditions are included the
p-values associated with overidentifying restriction tests become inflated, causing the tests to
underreject.

10 See Farnsworth et al. (1995) and Ferson and Schadt (1992) for an alternative method for con-
structing conditional performance benchmarks.
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for any matrix α ∈ <N K such that
∑

n∈N α′n Zt = 1 (i.e., X ′t+1α
′ Zt ∈

Rp,t+1). Alternatively, the requirement for d∗p,t+1 as given in Equation
(21) can be replaced by E (Xt+1 d∗p,t+1 | Zt ) = 1N , which means that
the pricing errors for the N assets are orthogonal to Zt , that is,

E
[
(Xt+1 d∗p,t+1 − 1N )Z ′t

]
= 0N×K , (22)

where 0N×K is an N × K matrix of 0s.11

Substituting Equation (20) into Equation (22) and replacing each
moment by its time-series sample counterpart produces

1

T

T∑
t=1

{
(Xt+1 X ′t+1 α

∗ Zt − 1N )Z ′t
} = 0N×K ,

or
T∑

t=1

(Zt Z ′t ⊗ Xt+1 X ′t+1) vec(α∗) = (Z ⊗ 1N )1T ,

where Z is the K × T matrix with its t -th column being Zt , which
gives

vec(α∗) =
[

T∑
t=1

(Zt Z ′t ⊗ Xt+1 X ′t+1)

]−1

(Z ⊗ 1N )1T . (23)

Together, Equations (20) and (23) provide the desired expression for
the computation of d∗p . With this d∗p , we can conduct conditional per-
formance evaluations on any managed fund by following the same
steps as in Method 1 for the unconditional case.

One can also conduct conditional performance evaluations follow-
ing a one-step, simultaneous estimation procedure. Recall that X̃ is
the stacked (N + 1) vector with the first N components given by X
and the last by the managed fund xs . Replacing the X in Equation
(22) by X̃ , we have

E
[
(X̃t+1 X̃ ′t+1 α̃

∗ Zt − 1N+1)Z ′t
] = 0(N+1)×K , (24)

where α̃∗ is now an (N + 1) × K matrix. As before, Equation (24)
represents an overidentified system under the null hypothesis that
[α̃∗N+1]

′ Zt = 0. This system can again be tested using GMM. Relying
on d∗p,t+1 = X̃ ′t+1 α̃

∗ Zt , one can use the estimated d∗p from the GMM
procedure and proceed with conditional performance assessments for
the managed fund under consideration.

11 We thank Heber Farnsworth for suggesting this alternative derivation.
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5. An Illustration

Following Method 2, we illustrate in this section the use of the per-
formance measures respectively defined by d∗, d+, and d∗p . Besides
the purpose of illustration, we also make the collection of reference
assets both larger than typically used in the literature and interesting
to a typical investor, so that the evaluation results to be discussed are
of independent interest. Specifically, 68 equity mutual funds are in-
cluded in the study and they are classifiable into five classes: growth,
growth-income, income, stability-growth-income, and maximum cap-
ital gain. We choose these funds because they have been evaluated
using the performance measures given in Examples 1 and 2 of Sec-
tion 1. The five classifications, described in Weisenberger’s Investment
Companies annual compendium, reflect the funds’ investment objec-
tives. For each of the 68 funds, monthly returns net of transactions
costs are used in our estimation, covering the period from January
1968 to December 1989. A more detailed description of the data used
is contained in Appendix B.

We address four questions regarding the performance of equity
mutual funds: (1) Do funds, on average, exhibit significant abnormal
performance? (2) Do there exist mutual funds (as a group or on an in-
dividual basis) that exhibit strong evidence of abnormal performance?
If so, is this abnormal performance positive or negative? (3) Does the
performance of mutual funds vary substantially across fund types or
across funds in general? (4) How are the answers to these questions
affected when conditioning information is incorporated into the con-
struction of the benchmark?

Table 1 summarizes the unconditional performance results for the
five fund groups.12 In the table the p-value is reported for the hy-
pothesis that the equally weighted portfolio of funds of a given type
performs no better than a constant-composition portfolio. Consider
first the LOP-based measure in panel A of Table 1. For four of the five
groups there is insufficient sample evidence to reject the hypothesis
that λ is not different from zero at all the standard levels of signifi-
cance. For only one class of funds, stability-growth-income, is there
sufficient sample information to reject the hypothesis at the 10 per-
cent confidence level. However, at the 5 percent confidence level this
hypothesis is not rejected even for this group. Alternatively, we can

12 In the tables we only report results obtained for the entire sample period 1968:01 to 1989:12. In
order to check the stability of our results, we also investigated the performance of the 68 funds
over two subperiods: 1968:01 to 1978:12 and 1979:01 to 1989:12. We found that for most funds the
performance results over the subperiods do not differ significantly from what is reported in the
tables. For space considerations, these results are not included here. They are, however, available
from the authors upon request.
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Table 1
Unconditional performance evaluation by fund groups

Fund type λ χ 2 p-value

Panel A: LOP-based measure

Growth −0.06 1.92 0.166
Growth-income −0.91 1.11 0.292
Income −0.37 2.28 0.105
Stability-growth-income 0.13 2.95 0.086
Maximum capital gain −2.4 2.46 0.117

Panel B: NA-based measure

Growth 0.19 2.08 0.149
Growth-income −0.65 1.22 0.268
Income −0.11 2.35 0.125
Stability-growth-income 0.69 3.15 0.076
Maximum capital gain −1.61 2.68 0.102

The annualized monthly returns for all funds of a given type are equally weighted to form a return
time series for the fund type. The sample time period is from 1968:01 to 1989:12. Unconditional
performance evaluation is then done on each of the five equally weighted return series, one
for each fund type. The tests use the generalized method of moments and the Newey and West
(1987) procedure to allow for heteroskedasticity and serial correlation. The lag length is set at 17
for all fund types. The number of observations is 264. The tests are χ2 tests of the overidentifying
restriction with one degree of freedom. Expressed in basis points, λ is the performance value,
based on either the LOP- or the NA-based measure.

draw inference based on the χ2 statistic. For a χ2 variate with one
degree of freedom, a significance level of 5 percent (for the p-value)
corresponds to a χ2 statistic of 3.84. In Table 1 (and in the other tables
as well), the reported χ2-statistic is always below 3.84. Thus, accord-
ing to this statistic, there is also insufficient evidence to reject the null
hypothesis of no abnormal performance.

Panel B of Table 1 contains the results for the NA-based perfor-
mance measure. The p-values for the NA-based measure are slightly
smaller than those for the LOP-based measure. As with the LOP-based
measure, for four out of the five groups the value of λ is statistically
insignificant at standard confidence levels, and the hypothesis of no
abnormal performance is not rejected at the 5 percent level for all
fund groups. For the stability-growth-income group, its λ under the
NA-based measure is positive and statistically significant at confidence
levels greater than 7.6 percent. This means, for example, that at the
10 percent confidence level we would reject the null hypothesis that
λ is zero and assign positive performance to this group.

Table 2 presents the simple averages of the individual estimates for
each fund within a group. For all five groups, the average p-values
suggest that at all standard significance levels there is no abnormal
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Table 2
Unconditional performance evaluation by individual funds

Fund type λ χ2 p-value

Panel A: LOP-based measure

Growth −0.868 1.29 0.277
Growth-income −1.71 3.21 0.150
Income −0.984 1.91 0.338
Stability-growth-income −0.597 1.97 0.242
Maximum capital gain −0.974 1.63 0.338
All −1.026 2.00 0.269

Panel B: NA-based measure

Growth −0.760 1.34 0.267
Growth-income −1.79 3.27 0.141
Income −1.03 2.02 0.332
Stability-growth-income −0.461 2.13 0.228
Maximum capital gain −0.926 1.73 0.333
All −1.03 2.09 0.246

The sample time period is from 1968:01 to 1989:12. Unconditional performance evaluation is
conducted for each individual mutual fund. The tests use the generalized method of moments
and the Newey and West (1987) procedure to allow for heteroskedasticity and serial correlation.
The lag length is set at 17 for all fund types. The number of monthly observations is 264. The
tests are χ 2 tests of the overidentifying restriction with one degree of freedom. Expressed in basis
points, λ is the simple average of individual performance values for all funds in a given group,
based on either the LOP- or the NA-based measure. The reported χ 2-statistic and p-value are,
respectively, the simple average of individual χ2-statistic values and individual p-values for all
funds in a given group. Among fund types, the rows under type “All” correspond to the simple
averages of all 68 funds included.

performance. In addition, λ is negative on average for all funds. Similar
conclusions follow for the NA-based measure (see panel B).

The results in Tables 1 and 2 suggest that on average, or on a
group-by-group basis, these mutual funds display very little evidence
of abnormal performance. Table 2 also reports the average of the un-
conditional LOP- or NA-based λ values for all 68 funds (under group
type “All” in Table 2). Based on the average p-value for all funds in-
cluded, there is insufficient sample information to reject the hypothesis
of zero performance for all funds as a whole, at all standard signif-
icance levels. For all the funds included, the NA-based measure on
average assigns a negative performance, while the zero performance
hypothesis would be rejected at confidence levels greater than 24.1
percent.

It is important to understand if the lack of performance can be
attributed to the extremely poor performance on the part of a few
funds or all funds. To address this issue, we show in Figures 1 and 2
the p-values for the individual mutual funds within each fund group.
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Figure 1
Unconditional LOP-based performance measurement
The p-values are from the χ2-test of the null hypothesis of no abnormal performance using the
LOP-based measure. Each p-value represents the probability that the corresponding variate is
greater than the sample value of the test statistic. The test statistic is asymptotically χ 2-distributed
with one degree of freedom.

These figures demonstrate that the p-values exhibit a large degree
of variation across funds. For example, the minimum and the max-
imum p-values are, respectively, 0.3 percent and 97 percent for the
LOP-based measure and 0.3 percent and 96 percent for the NA-based
measure. Eight percent of the funds have a p-value less than 5 percent
using the LOP-based measure, and 13.2 percent of the funds have a
p-value less than 5 percent using the NA-based measure (see Table
3). Of the 68 funds, the number of funds with positive performance
values is 11 by the LOP-based measure and 7 by the NA-based mea-
sure. Recall that zero performance for the equally weighted portfolio
of stability-growth-income funds is rejected at the 10 percent confi-
dence level, while the average p-value for the funds in this group is
24.2 percent. In Figure 1, three of the seven funds in this group show
p-values less than 10 percent while three others have p-values be-
tween 20 and 65 percent. Thus, examining each fund separately may
give one more information about mutual fund performance.

In the maximum capital gain group, there are two funds for which
zero performance is strongly rejected by the data, with their p-values
at 0.3 and 0.4 percent. In addition, both of these funds have positive
NA-based performance values. Since the mutual funds are classified
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Figure 2
Unconditional NA-based performance measurement
The p-values are from the χ2-test of the null hypothesis of no abnormal performance using
the NA-based measure. Each p-value represents the probability that the corresponding variate is
greater than the sample value of the test statistic. The test statistic is asymptotically χ2-distributed
with one degree of freedom.

Table 3
Summary performance statistics for individual funds

Performance Percent of funds Number of funds
measure Max p Min p with p < 5% with λ > 0 and p < 5%

Unconditional LOP 0.97 0.003 8.8 3
Unconditional NA 0.96 0.003 13.2 2
Conditional LOP 0.98 0.004 2.9 1

Reported above are the statistics based on individual p-values and λ-values for all 68 funds, using
the respective performance measures: the unconditional LOP-based, the unconditional NA-based,
and the conditional LOP-based measures. That is, the individual estimates are obtained by running
the estimation separately for each fund and for each measure. The sample period is from 1968:1
to 1989:12. See the descriptions in Tables 2 and 4. Here, p stands for p-value.

into five groups based on a reading of each fund’s prospectus prior to
the beginning of the sample period, the classification can serve as an
indicator of the fund’s risk level. The ordering of the fund types from
the lowest to the highest risk level is income, stability-growth-income,
growth-income, growth, and maximum capital gain. This means that
the funds that lead to the strongest rejection of zero performance are
members of the highest risk fund class: maximum capital gain funds.
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In addition, zero performance for 6 of the 10 funds in this group
is rejected at the 10 percent confidence level. Figure 2 also depicts
the individual p-values for funds that comprise the lowest risk fund
group: income. Note that at the 10 percent confidence level, zero
performance is not rejected for any fund in this group. Therefore, it
appears that abnormal performance is associated with the risk level of
the fund. The riskier the fund, the more likely that the fund possesses
abnormal performance.

Note that the statistics in Table 3 may not be independent across
funds. To see the robustness of the results, we can conduct the Bonfer-
roni test. According to the Bonferroni inequality, at a critical p-value
of say 5 percent, the joint hypothesis of no abnormal performance
among all 68 funds can be rejected if there is any fund with a p-value
less than 0.073 percent (= 5

68 percent). In Table 3, however, the min-
imum p-value for any fund and under any performance measure is 3
percent. Therefore, the joint hypothesis of no abnormal performance
among all funds cannot be rejected according to the Bonferoni test.

The overall lack of evidence for the existence of positive perfor-
mance is consistent with the findings of previous researchers.13 Two
recent studies that employ admissible performance measures are by
Connor and Korajczyk (1991) and Lehmann and Modest (1987) (see
Examples 1 and 2 in Section 1). The set of funds we examine is a
subset of the funds examined by these researchers. However, their
sample period is a subperiod of ours. The first two authors find, in
contrast to our results, evidence for the existence of “widespread” ab-
normal performance using the APT-based measures. Consistent with
our findings, they find that alphas from the APT-based performance
measures are predominantly negative. However, Lehmann and Modest
also carefully document the sensitivity of their results to, for example,
the choice of the factor estimation procedure, the number of factors,
and the number of securities used in estimating the factors. They find
that the performance results based on the CAPM differ dramatically
from those obtained from the APT-based measures. Connor and Kora-
jczyk (1991) also use the CAPM and a five-factor version of the APT to
investigate the performance of the same five classes of mutual funds,
either by averaging the results of the individual funds within a group
or by looking at an equally weighted portfolio of the funds within
each group. Using the CAPM, they find significant negative perfor-
mance for only the growth-income and the maximum capital gain
funds. They point out that even though these performance values are
statistically significant, the size of the APT-based performance values

13 See, for example, Henriksson (1984), Jensen (1968, 1969), and Sharpe (1966).
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Table 4
Conditional performance evaluation by fund groups

Fund type λ χ2 p-value

Growth −0.169 1.88 0.169
Growth-income −0.032 0.811 0.368
Income −0.117 1.11 0.292
Stability-growth-income −0.129 3.04 0.081
Maximum capital gain −0.187 1.57 0.210

The three information variables used in constructing the conditional stochastic discount factor are
nominal 1-month Treasury bill rate, dividend yield on the CRSP value-weighted stock index, and
the difference in yield to maturity between bonds with greater than 15 years to maturity and bonds
with 5 to 15 years to maturity. The annualized monthly returns for all funds of a given type are
equally weighted to form a return time series for the fund type. The sample time period is from
1968:01 to 1989:12. Conditional performance evaluation is then done on each of the five equally
weighted return series, one for each fund type. The tests use the generalized method of moments
and the Newey and West (1987) procedure to allow for heteroskedasticity and serial correlation.
The lag length is set at 17 for all fund types. The tests are χ 2 tests of the overidentifying restriction
with one degree of freedom. Expressed in basis points, λ is the performance value using the
conditional LOP-based measure.

is within the range that would be explained by reasonable mutual
fund transactions costs. In another study, Grinblatt and Titman (1988)
also report no evidence of positive abnormal performance, based on
returns for any of the seven classes of funds that they consider.14

To see how a conditional performance measure may rank funds
differently, we use three information variables: the nominal 1-month
Treasury bill, the dividend yield on the CRSP value-weighted NYSE
stock index, and the term premium, which is the difference between
the yield on bonds with more than 15 years to maturity and bonds
with 5 to 15 years to maturity. For further discussion of these variables,
see Appendix B.

Table 4 gives the conditional evaluation results for the five fund
groups. As in the unconditional case, for four out of the five groups,
there is insufficient sample information to reject the hypothesis of zero
abnormal performance at all standard significance levels. In general,

14 Grinblatt and Titman (1988) estimate survivorship bias by computing the difference between the
traditional Jensen measure estimated from a sample of hypothetical returns which is not subject
to survivorship bias and from a sample of hypothetical returns which is subject to survivorship
bias [also see Brown et al. (1992)]. They conclude that the survivorship bias for a collection of 157
equity mutual funds is relatively small, 0.5 percent per year or less. Since the funds in our sample
are a subset of the funds that survived the entire period, there is the possibility of survivorship
bias in our test results. However, this is a positive bias in the sense that it may exaggerate positive
performance values since only those managers that have survived are being evaluated. Given
that we find little or no evidence of positive abnormal performance, and given the findings of
Grinblatt and Titman (1988) on the magnitude of the bias, our conclusion is most likely robust to
survivorship bias considerations.
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Figure 3
Conditional LOP-based performance measurement
The p-values are from the χ2-test of the null hypothesis of no abnormal performance using the
LOP-based measure. Each p-value represents the probability that the corresponding variate is
greater than the sample value of the test statistic. The test statistic is asymptotically χ 2-distributed
with one degree of freedom.

the p-values in the conditional case are larger than in the uncondi-
tional case. In addition, the λ’s are negative for each group. Figure 3
displays the p-values for the conditional LOP-based measure in terms
of individual funds by group. The p-values for most individual funds
are respectively higher than in the unconditional case. The largest
impact of conditional information is with regard to the growth funds,
where these funds which previously had p-values below the 5 percent
level now have p-values greater than 5 percent. About 2.9 percent of
the funds have p-values less than 5 percent for the conditional LOP
measure, compared to 13.2 percent of the funds for the unconditional
case. There are two possible reasons for this increase in p-values for
the individual funds. First, there are more parameters to estimate in
the conditional case. Given the same number of observations, the sta-
tistical power of the estimates generally goes down, resulting in higher
p-values. Alternatively, as discussed before, using public information-
based dynamic portfolios as performance references leads to harder
performance yardsticks. This makes it more likely for funds to show
no abnormal performance. This point is also reflected in the λ values
reported in Table 4. For instance, the performance value for the fund
group stability-growth-income changes from 0.13 in the unconditional
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LOP case to −0.129 when the conditional measure is used, while that
for the growth funds changes from −0.06 to −0.169.

For the fund groups growth-income, income, and maximum capi-
tal gain, their performance values go up somewhat (while remaining
negative as before) in the conditional case. This is consistent with the
finding in Ferson and Schadt (1992) that performance switches from
negative to positive when a conditional performance measure is used.
See the discussion in Section 3 as to why this can occur.

There is only one fund that has a positive conditional performance
value and a p-value less than 5 percent. For some funds the specified
conditioning information has little or no effect on the test statistic.
For example, funds five and nine in the maximum capital gain group
have, respectively, p-values of 1 percent and 0.3 percent in the un-
conditional case and 1.1 percent and 0.4 percent in the conditional
case. One interpretation of this is that the portfolio managers of these
funds have generated abnormal returns by exploiting information that
is not included in the three information variables. That is, the man-
agers have shown an ability to use conditional information to guide
investment decisions. An alternative interpretation is that the three
selected variables do not reflect all the relevant information for the
estimation of the stochastic discount factor d∗p .

6. Concluding Remarks

In this article we have developed a general framework for evaluating
the performance of a managed portfolio. In particular, we specify a
minimum set of conditions that any performance measure must sat-
isfy. Using this framework to assess existing performance measures
and performance measurement in general leads to the following con-
clusions.

1. The first conclusion is negative in spirit. It says that if a managed
fund has truly enlarged the investment opportunity set, then any per-
formance value can be assigned by choosing the right performance
measure that satisfies these minimal conditions. In addition, for any
two such funds the ranking is performance measure-specific.

2. The second conclusion is positive in spirit. It says that if we also
require each performance measure to be positive, performance mea-
surement then becomes less dependent on the particular admissible
performance measure used in the evaluation. When the performance
measure used is positive, any managed portfolio whose excess return
is positive with probability one will be classified as outperforming.
Furthermore, if a fund is assigned a positive ranking, it must be the
case that at least some investor would like to hold more of the man-
aged fund. The converse of this is also true. Another point made in
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this article of a positive nature is that given the negative theoretical re-
sults, it becomes even more important to evaluate performance using
a battery of methods before drawing strong inferences.

3. The framework developed in this article provides a means of con-
ducting performance evaluations independent of asset pricing models.
Since performance evaluation by its very nature involves testing the
economic and statistical significance of something that is relatively
small (i.e., an excess return), a small amount of model misspecifi-
cation may corrupt the entire inference. In this sense, identifying an
admissible performance measure by estimating the equation system
in Equation (8) is particularly useful because, unlike existing perfor-
mance measures that build on equilibrium asset pricing models, such
a measure does not rely on any asset pricing model and hence is not
subject to any model misspecification. Furthermore, for performance
evaluation purposes, such a measure is as admissible and qualified as
any equilibrium-based measures.

4. Finally, our framework enables one to conduct conditional per-
formance evaluation. When public information-generated returns are
used as performance references, managers will need to truly utilize
private information efficiently in order to receive a positive perfor-
mance ranking.

Appendix A: Proof of Results

Proof of Theorems 1 and 2. From Chamberlain and Rothschild (1983),
the LOP holds if and only if there is some d ∈ L2 such that

E (d xn) = 1 ∀n ∈ N . (25)

See, alternatively, Chen and Knez (1994) and Hansen and Jagannathan
(1991, 1994).

Suppose the LOP holds. Then, there is a d satisfying Equation (25)
and, for any x ∈ R0,

E (d x) = 1. (26)

Now, define λ(·): L2 → < by λ(x) = E (d x) for every x ∈ L2. Next,
for any given x ′ ∈ R0, λ(x − x ′) = E [d (x − x ′)] = E (d x)− E (d x ′) =
1 − 1 = 0, for each x ∈ R0, which means λ satisfies Condition I. By
the Riesz representation theorem,15 the function λ so defined must

15 Let H be a Hilbert space defined on the probability space (Ä, F,Pr ) and equipped with the
mean-square inner product, and f (·): H → <. The Riesz representation theorem states that f is
a continuous linear functional if and only if f can be uniquely represented by some d ∈ H such
that f (x) = E (d x) for every x ∈ H .

547



The Review of Financial Studies / v 9 n 2 1996

also be linear and continuous, satisfying Conditions II and III. Equa-
tion (25) ensures that λ meets Condition IV. Thus, λ is an admissible
performance measure.

Suppose that there is a function λ that is an admissible performance
measure. By Condition II and III, λ must be linear and continuous on
L2, which implies, by the Riesz representation theorem, there is a
unique d ∈ L2 such that λ(x) = E (d x) for each x ∈ L2. Furthermore,
for any given x ′ ∈ R0, it holds by Condition I that λ(x−x ′) = E [d (x−
x ′)] = 0, for every x ∈ R0. Thus,

E (d x) = E (d x ′) = k, (27)

for each x ∈ R0 and some constant k ∈ <. By Condition IV, k 6= 0
(because xn ∈ R0). In summary, each admissible measure can be
represented by a unique d satisfying Equations (1) and (2).

To close the loop of implications, suppose there is a d ∈ L2 such
that it both defines a function λ as in Equation (1) and satisfies Equa-
tion (2). By the Riesz representation theorem, this λ is continuous
and linear. Since k 6= 0, dividing both sides of Equation (2) by k gives
Equation (25), which, by the above stated result from Chamberlain
and Rothschild (1983), means that the LOP holds.

Proof of Theorem 3. From Harrison and Kreps (1979) and Ross (1978),
there is no arbitrage if and only if there is a d+ ∈ D such that
d+ À 0 [see also Hansen and Jagannathan (1991, 1994) and Hansen
and Richard (1987)]. Therefore, suppose there is no arbitrage. Then,
there is a d+ ∈ D such that d+ À 0 and d+ defines an admissible
performance measure λ as in Equation (1). Clearly, this admissible
measure λ satisfies Condition V.

Next, suppose there is an admissible positive performance measure
λ. First, by Theorem 2, there must be a unique d ∈ L2 such that d
represents λ as in Equation (1) and d satisfies Equation (2). Second,
since λ is positive on L2, this d must also be so: d À 0. Third, rewrite
Equation (2): E (d xn) = k, ∀n ∈ N and for some constant k. Since
there is one xn such that xn À 0 and since d À 0, the above k
must also be positive: k > 0. Then, dividing both sides of the above
equation by the constant k and letting d+ ≡ d

k , we have E (d+ xn) = 1
for each n ∈ N , which means that d+ À 0 and d+ ∈ D. Finally, we
have from Equation (1) that, for every xs ∈ L2 and some x ′ ∈ R0,
λ(xs − x ′) = E [d (xs − x ′)] = k E [d+ (xs − x ′)], which, letting η = k,
gives Equation (9).

Suppose there is a d+ ∈ D such that d+ À 0 and it satisfies Equa-
tion (9) for some constant η > 0. Then, clearly, there is not arbitrage.
This completes the loop of implications.
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Proof of Theorem 4. Since the set of all admissible measures is com-
pletely represented by the set D, and since D is only a rescaled version
of the set D (i.e., for each d ∈ D, there are a nonzero constant η and a
d ∈ D such that d = η d), we only need to focus on those admissible
measures represented by D.

Following the usual practice, assume the linear span M is a closed
subspace in L2. Let M⊥ be the orthogonal complement of M in L2.
Recall from Chen and Knez (1995) that each d ∈ D can be expressed
as d = d∗ + ε, for some ε ∈ M⊥, where d∗ is the unique member in
D that is also in M . Conversely, d∗ + ε ∈ D for any ε ∈ M⊥.

First, by Condition I, every admissible performance measure has to
assign a zero performance to xs if xs ∈ R0. This part is trivial. Next,
suppose that every admissible measure λ assigns a zero performance
to xs : λ(xs−x ′) = 0, for any given x ′ ∈ R0. By Theorem 2, this means
that

η E [d (xs − x ′)] = η E [(d∗ + ε) (xs − x ′)] = 0, (28)

where d ∈ D and η d represents λ as in Equation (1). Note that the
function λ∗ defined by λ∗(x) = E (d∗ x) for each x ∈ L2 gives an
admissible measures, which implies by assumption that E [d∗ (xs −
x ′)] = 0. This and Equation (28) together yield

E [ε (xs − x ′)] = 0, ∀ε ∈ M⊥, (29)

which can only hold when the excess return (xs − x ′) is orthogonal
to every random variable in M⊥. Thus, (xs − x ′) must be in M , which
is possible only when xs is in the uninformed set R0 (because M is a
closed subspace). In turn, xs must be achievable by an uninformed
investor.

To prove the last part, suppose that xs 6∈ R0. Then, xs 6∈ M . Project
xs onto M (using the mean-square inner product) to yield, by the
projection theorem, xs = x∗+ε∗, where x∗ ∈ M is the projected point
and ε∗ ∈ M⊥ is the component orthogonal to M . Note that d∗+η ε∗ is
in D, for any constant η. Let λ′ be the admissible performance measure
defined by d∗ + η ε∗. We have, for a given x ′ ∈ R0 and for any value
v ∈ <,

λ′(xs − x ′) = E [(d∗ + η ε∗) (x∗ + ε∗ − x ′)]
= E [d∗ (x∗ − x ′)]+ η ‖ε∗‖2 = v

by choosing η = v−E [d∗ (x∗−x ′)]
‖ε∗‖2 , where ‖ε∗‖2 6= 0 since xs 6∈ M by

assumption. Thus, for any desired performance value for the fund,
there is an admissible measure that gives it.

Proof of Theorem 5. Suppose that two managed gross returns, xs and
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xs ′′ , are such that xs 6∈ R0 and xs ′′ 6∈ R0. Since the market is frictionless,
this means that xs 6∈ M and xs ′′ 6∈ M . Assume that there is an admissible
measure, λ, uniquely represented by some d ∈ D, that ranks xs higher
than xs ′′ :

λ(xs − x ′)− λ(xs ′′ − x ′) = λ(xs − xs ′′) = E [d (xs − xs ′′)] > 0,

for a given reference return x ′. Now, project xs ′′ onto the closed lin-
ear span of xs and M , denoted by span(xs,M ), and obtain, by the
projection theorem, xs ′′ = x ′′ + z , where x ′′ ∈ span(xs,M ) and z is
orthogonal to span(xs,M ) (which also means z ∈ M⊥), and ‖z‖ 6= 0
because the noises in the signals s and s ′′ are not perfectly correlated.
Since d + µ z is in D for any constant µ, d + µ z defines another
admissible measure λz :

λz (xs − xs ′′) = E [(d + µ z) (xs − xs ′′)]

= E [(d + µ z) (xs − x ′′ − z)]

= E [d (xs − x ′′ − z)]− µ ‖z‖2,
which can be made negative by the choice of a very large constant µ.
Then, the admissible performance measure λz reverses the ranking of
the two funds.

Proof of Theorem 6. A general proof can be constructed following
the proof of Harrison and Kreps (1979, Theorem 1). For the purpose
here, let’s assume that each investor’s preferences can be represented
by von Neumann-Morgenstern utility functions U (·) that are strictly
increasing and continuously differentiable. We only need to prove
the first part of the theorem because the other part follows similarly.
Without loss of generality, each uninformed investor starts with $1.00.
Take some investor with preferences U (·) and assume his optimal
portfolio gross return is x∗ ∈ R0. By the first-order condition for the
investor’s portfolio problem, we have

E [x U ′(x∗)] = 1 ∀x ∈ R0, (30)

where U ′(·) is the first-order derivative of U .
First, suppose there is some NA-based measure λ+ that assigns a

positive performance to xs . By Theorem 3, there are some η > 0 and
d+ ∈ D+ such that

λ+(xs − x ′) = η E [d+ (xs − x ′)] > 0, (31)

for any x ′ ∈ R0, which implies, for each x ∈ R0,

E [d+ (xs − x)] = E (d+ xs)− E (d+ x) > 0. (32)
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Now, let U ′(x∗) = d+ À 0 for some investor with utility func-
tion U (·) and optimal portfolio return x∗. Then, the above equation
yields: E [U ′(x∗) xs ]−E [U ′(x∗) x ] > 0, which means that the investor’s
marginal valuation of xs is higher than that of any portfolio in R0. That
is, this investor prefers xs over every reference portfolio at the margin.

Next, suppose some investor with utility function U (·) and optimal
portfolio x∗ values (at the margin) xs more than any reference portfo-
lio in R0. That is, for each x ∈ R0, E [U ′(x∗) xs ]−E [U ′(x∗) x ] > 0. Letting
d+ = U ′(x∗)À 0, we then have λ+(xs − x ′) ≡ E (d+ xs)− E (d+ x) =
E [d+ (xs−x)] > 0. This function λ+ so defined clearly satisfies Condi-
tion I (because of the first-order condition for the investor’s portfolio
problem), Conditions II and III (because of the Riesz representation
theorem), and Conditions IV and V (because of the fact that d+ À 0).
Thus, λ+ is an NA-based measure that assigns a positive performance
to xs .

Appendix B: Data Description

Three data sets are used: the set of stock returns used to generate the
reference payoffs, the set of information variables used to generate
conditional benchmark payoffs, and the set of mutual funds.

Stock returns
Monthly returns for all individual stocks listed on the NYSE and the
AMEX are used, beginning in January 1968 and ending in December
1990, as provided by CRSP. These return series are assigned to their
respective industrial groups according to the two-digit SIC codes. For
each industry, an equally weighted portfolio is constructed by taking
the simple average of the existing returns for a given month, resulting
in a total of 12 equally weighted industrial portfolios [see Ferson and
Harvey (1991) and Ferson and Korajczyk (1995) for a similar construc-
tion].

Information variables
Three information variables are included and chosen based on evi-
dence of their predictive power from existing research: (i) nominal
1-month Treasury bill rate, which is obtained from the CRSP riskfree
files and shown to be a predictor of future stock returns by, among
others, Fama and Schwert (1977), Ferson (1989), Ferson and Kora-
jczyk (1995), and Keim and Stambaugh (1986); (ii) dividend yield of
the CRSP value-weighted NYSE stock index, which is documented
to possess predictive power by, for example, Campbell and Shiller
(1988) and Fama and French (1988, 1989); and (iii) term premium as
measured by the difference between yields on bonds with more than
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15 years to maturity and bonds with 5 to 15 years to maturity [e.g.,
Ferson and Harvey (1991)], constructed from the Ibbotson corporate
bond module (module 14).

Mutual fund data
The monthly returns net of transaction costs for the 68 funds are ob-
tained from Standard and Poor’s “Over-the-Counter Daily Stock Price
Record,” Weisenberger’s “Investment Companies,” and Moody’s An-
nual Dividend Report for the period from January 1968 to December
1982, and from Morningstar Inc. for the remaining months until De-
cember 1991. For the first period, the data was graciously provided
to us by Wayne Ferson. As both data sets have the names of each
fund and there are 7 years of overlap, merging the data was straight-
forward. The Morningstar tape contains information on each fund’s
portfolio composition and investment objectives, which allows us to
select only funds whose stated objective was to invest primarily in
equities. This restriction on the funds selected is motivated by the fact
that we use only equity securities to estimate the stochastic discount
factors.
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